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OF MAPS AND MATRICES'

Waldo R. Tobler*

There are now a number of instances in which geographical data have been
collected at regular spatial intervals, for the obvious reason that numerous
analytical investigations are thereby greatly facilitated. As a consequence it is
not unrealistic to assume here that a measure of some geographical event has
been taken at regular intervals in two orthogonal directions in a region sufficient-
ly small to allow earth curvature to be neglected. For convenience it is
assumed that the spacing 4X = 4Y =1 and that the region of observations is
rectangular in shape. With these assumptions the data can be arrayed in the
form of a geographical matrix G = [g:;]. Contouring of this matrix might lead
to a conventional isarithmic map so that the data array can be considered to
yield either a matrix or a geographical map.

The objective is now to demonstrate that matrix multiplication can be applied
to the map to yield geographically useful results. Specifically, operations of the
form AGB = G* will be examined. By assumption A and B are square matrices
and must conform with G. The resultant of the multiplication is a new map

G*. Of particular interest are reversible processes, for which A and B have

inverses, that is, ATG*BTN=6.

From the definition of matrix multiplication it is clear that pre-multiplication
of G by A operates to affect the columns of G, and that post-multiplication by
B operates on the rows of G. Since the process is linear, the order of the

‘multiplication is immaterial. In most, but not all, cases of interest A = B, as-

suming G to be square.
In general the given matrix multiplication defines a function which transforms
one map into another. This function may have as many arguments as there are

_elements in the original matrix. A [local operator is a function which defines

a value for each element of a transform in terms of the corresponding element
in the original and a small set of its neighbors. (See Rosenfeld and Pfaltz [10].)
Such an operation, for example, can be defined using a neighborhood which
consists of a given element and its eight immediate neighbors. In this case the
function has only nine elements and is of the form

g?j = f(Gi-1,j-15 Gi-1,51 Gi-1,5+15 Gi,i-1, i.d» Gi,i+1s Jit1,5-15 Gis1,7s Gitr,d+1) -

Neighborhoods which are larger or of different shape can be defined in a similar
manner. From the definition of matrix multiplication it follows that each g3

t The assistance of Dr. Henry Pollack, geophysicist in the Department of Geology at the
University of Michigan, in deriving the finite difference forms of the differential equations,
is greatly appreciated.

* The author is Associate Professor in the Department of Geography at the University

of Michigan.
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is obtained as a weighted linear combination of the corresponding g:; and some
(perhaps all) of its neighbors. The matrix multiplication is therefore equivalent
to a class of linear local operators. Linear weighting functions are also known
to operate as discrete (or digital) frequency filters and the matrix multiplication
can also be interpreted from this point of view. (See Holloway [5] and Mesko [7].)

As a first example let G represent elevations taken from a topographic map,
and let

e 3 - ¢ @0 gl G0
I 3% 0 0 0 0 0 O
i i S e R L o |
00, . +. 4 % 0,08 .0, .0
A—p-—10 . 0.0 4 % 4 0 6 6
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i Bl S0 0 100 gy §Y)

Interpreted as a local operator, the system AGA = G* is clearly equivalent to

p=+k q=+k
2 2 WpePitp,j+a

* _ p=—k q=—k
gij = REEE Gt

k
Wpq
p=—k gq=—k

with £ =1, and weights combined from the row and column values as follows

Wi+1,j-1 Wisr,j Wist,j+1

Wiy = = Wi, j-1 Wi, j Wi, j+1

Ooj— it OO | NP
OO ;— PN

18 Wi-1,j-1 Wi-1,7 Wi-1,j+1

e Ry PN

B DO

For %k > 1 the matrix is simply less sparse. The specific @;; values chosen
yield a simple binomially weighted moving average so that the resulting matrix
G* now represents elevations as might be obtained through map generalization.
As can be seen from the accompanying figure, the effect of the transform is

4

W”\JDQ‘/’S"

FIGURE 1: Original and Filtered Spatial Series Shown in Contour Map Form.
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to simplify the contours; in other words, a low-pass spatial frequency filter has
been applied. In terms of geographical theory, it can be argued that the pro-
cesses under study contain small scale disturbances. These minor fluctuations
distract from our ability to comprehend the general phenomena and are, there-
fore, appropriately eliminated. This example might perhaps be of more value
if gi; had represented empirical urban land values which are to be compared
to some theoretical model. In this case the smoothing procedure might facilitate
recognition of geographical patterns by filtering out ‘‘random’’ disturbances. If
the elements of G had been complex numbers the operation AGA = G* could
be interpreted as the smoothing of a vector field, causing small eddies to be
eliminated. Interpretation of a repeated application, A*GA*, should be obvious.

It is known that certain linear differential equations can be written in matrix
form (Lanczos [6]). The correspondence is not quite complete, however, unless
boundary conditions are specified. (These appear in the matrix A, above, as
slightly different weights in the corners, and correspond to special definitions
required for local operators in the vicinity of the edge of the domain.) As one
example consider the diffusion equation for a homogeneous medium from clas-
sical physics. It suffices here to treat the one dimensional case since it has
already been demonstrated that the matrix multiplication can be decomposed
into row effects and column effects.

The diffusion equation is

a_ 10

ot a ox'’
where ¢ is the quantity being diffused (e. g., heat), # is time, x is the spatial
coordinate, and a is the diffusivity. In forward finite difference form, with

superscripts to denote time and subscripts to denote the spatial variable, one
obtains

gi = M(gi-, + giv) + 1 — 2M)g;

where M = 4t/(a(4x)?) is known as the modulus. It can now be demonstrated
that the previous smoothing operator is in fact a diffusion operator if and only
if, in the three weight case (w; > 0),

Wi W 2

=M, and —— =1-2M.

i=+1 i=1
2 Wi > Wi > w;
i=—1 i=—1 {

i=—1

For a numerically stable solution it is required (Todd [11], Carslaw and
Jaeger [3; Ch. 18]) that M < 3%. In the case illustrated the equality holds and
the equations are satisfied. In practice, solutions are obtained in a sequential
mode rather than in the parallel, matrix computation.

The inverse operation is equivalent to backward time integration of the
diffusion equation. In the finite difference form one obtains

gi7 = —M(gi-, + gin) + (1 4+ 2M)gt .

With the same modulus as before the inverse weights are —%,2, —3. The
matrix A also has an inverse (See Appendix) which however is not a local
Operator but has as many arguments as in the original matrix. The difference

.
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between the two inverses probably lies in the finite difference quantization
process.

If A is such that ¥ a;;j =1 and B is such that ¥ b;; =1 then it appears
J i

that A and B can be considered Markovian transition matrices, and the opera-
tion AGB = G* converts the state matrix G into a new state matrix. If A = BT
the process can be considered a symmetrical Markov mesh. This line of inquiry
appears to offer promise.

The simple model AGB = G* is thus seen to be related to local operators,
frequency filter theory, and differential equations. Each of these topics has
applications far too numerous to cite here. Only Hagerstrand’'s Monte Carly
simulation of the spread of innovations [4] is explored here. This model is not
a classical diffusion model (the principle of conservation does not hold) but
rather a model of spread and growth. (See Rapoport [9].)

Higerstrand’s simulation has a number of attractive features, including a
clear exposition of the process of information spread. The intent here is to
explore the extent to which the model can be reformulated as

Giim = A"G:B™ ,

where m denotes the generation and the superscripts on the right are also
exponents. Higerstrand himself speaks of a ‘‘neighborhood effect’”” and con-
structs a ““mean information field”” which has some of the attributes of weight-
ings employed for local operators.

A set of one-dimensional weights which closely correspond to Hagerstrand's
mean information field is

.0980 .1735 .6656 1735 .0980 .

There are five arguments here but this is not critical. More importantly, if
this set of figures is employed as a weighting, the initial number of “‘carriers”
is reduced. This will always be the case unless the central weight satisfies
w,>1. One can arbitrarily choose weights which appear to approach Hagerstrand’s
model, e.g., 3 § 3, and can verify their effect by examining the response of a
unit impulse to this set of weights. It is convenient to require that the sum
of the weights satisfy ¥ w = 2 since this yields a geometrical growth in the
number of knowers or carriers. If p;; represents the number of potential car-
riers in cell 7, j it is obviously easy on a computer to constrain g:; after each
iteration to satisfy gi; < p:; but this is not conveniently incorporated into the
matrix model.

The specific weights suggested above satisfy the requirements but are still
capriciously chosen. The set %, §, &, would also have worked. Perhaps the model
could be written as the finite difference analogue of the diffusion equation with
sources. On the other hand,

gi" = M(gi-, + gi) + 1 — 2M)g: + gi ,

appears to come close to the model although this does not seem to correspond
to any particular differential equation. The inverse is not known and it is not
clear what convergence and stability mean since there is no direct differential
analogue. Another approach might be to fit the weights, using the constraints
we >1, ¥ w =2, from empirical data as was done by Hagerstrand.
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In the two dimensional case the choice of individual weights is slightly
more complicated but the central weight should still be greater than or equal
to unity, and the entire set of weights should still sum to two for a geometrical
growth rate. An asymmetric weighting can be chosen to incorporate tendencies
for easier movement in particular directions. Such an effect might, for example,
be of interest for the spread of a botanical or biological species under prevailing
wind conditions. Exterior and interior barriers can be handled in a similar
manner by appropriate choice of specific weights. For a reflecting barrier (See
Nystuen [8]), set ¥ w =2, wi.x =0, when the barrier lies at the near edge of
cell k; for an absorbing barrier, set 3 w < 2, w;. = 0; and for a semi-permeable
barrier, reduce the appropriate w;.; and choose the sum of the weights to dispose
of the quantity not passed, in either a reflective or absorbing mode. Favorable
(or unfavorable) environmental conditions at a location can also be incorporated
by either increasing the sum of the weights (to increase the rate of growth),
or by enlarging the neighborhood (making the mean information field less “‘steep””).

The model sketched above might, on the average, yield results which ap-
proximate those of Hiagerstrand. A clear disadvantage is that one must accept
the notion of fractional knowers. The weights, however, could also be chosen
in a stochastic manner. With ¥ w =2 and w, = 1 the additional unit weight
can be chosen to yield integer contacts (i.e., A =1+ S, where S consists of
ones—or zeros—whose location corresponds to the probability density function of
the mean information field). The matrices A and B could change with each gener-
ation. This is perhaps nothing more than an alternate computational alogorithm
for Higerstrand’s model. The process is not reversible unless one knows the
inverses of each of the stochastic matrices.

Another differential equation which appears promising as a starting point is
9 — MgK —g),

ot
where K(=p;;) is the potential number of carriers. This has the advantage of
automatically producing logistic-type growth curves. Extension to two-dimen-
sional finite difference form is straight-forward.

Epidemiological models of the spread of diseases (Baily [1] and Brown [2])
often deal with several categories of carriers. It may be possible to construct
such a model along the lines suggested here by requiring operations on one
matrix to depend on a previous operation on another matrix. Another, some-
what similar, modification recognizes the eventual spatial decay of an innovation
(or fad). Today’s fashion in Nebraska may once have been popular in New
York but has now passed out of style there. A direct finite difference form of
the physical wave equation

’g i d'g
ot ox’

leads to

9" = M(gi-y + giv) + 201 — M)gi — gi",
which contains a lagged term. It appears that a similar effect can be achieved
when w; > w,. Another modification might allow the w: (and thus ¥ w;) to be
functions of time. Even without a full development of these topics it should
be clear that the model described is quite flexible.
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APPENDIX: THE INVERSE OF THE SMOOTHING MATRIX

Definitions

(1) A matrix A = [a;;] is diagonally dominant if

n

{as|i2 X ams)ocl i<l
1 =1
Gei

(2) A matrix A is reducible, n > 2, if there exists an # by » permutation

matrix P such that
T A A
PAPI —= 11 I-]
[ 0 Axnl’

where A,, is an » by r submatrix, A, is an (n-7) square submatrix, 1 <7r < n.
If such a P does not exist then A is irreducible.

(3) A directed graph is strongly connected if for any ordered pair of nodes
Nj and N, there exists a directed path NjNmiy NuiNps, ..., N,.Ni connecting
N; and N,.

(4) A matrix A is irreducibly diagonally dominant if A is irreducible and
diagonally dominant with the strict inequality valid for at least one 7.
Theorems

(I) A matrix is irreducible if, and only if, its directed graph is strongly
connected.

(II) A matrix which is irreducibly diagonally dominant is non-singular.
These theorems are proven in standard works on matrix algebra.
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AN EXTENSION OF THE HORTON COMBINATORIAL
MODEL TO REGIONAL HIGHWAY NETWORKS

Peter Haggett*

1. INTRODUCTION

Although transportation networks of all modes can be shown to share
certain common mathematical properties, current research appears to fall into
a number of parallel efforts, each restricted to the problems of empirically-
defined media. Thus the growing body of work on traffic assignment models
(U. S. Dept. of Commerce [22], Road Research Laboratory [13]) for highway
networks contains rather few cross-references to hydrological research on flood-
routing problems (Dawdy and O’Donnell [5] and Shen [16]) despite some simi-
larity in terminology and problems. This paper attempts to build a somewhat
speculative bridge between two lines of network research by taking an elementa-
ry combinatorial model developed by hydrologists and geomorphologists for the
analysis of stream networks (the Horton model [8]) and extending its application
to include regional highway networks.

2. PATH ORDER IN THE HORTON MODEL

The sequence of regularities in the spatial structure of stream-channel
networks recognized by Horton and extended by other workers (notably by
Strahler and his students at Columbia University [18]) hinges on a simple
combinatorial system of route ordering. The application of the system is
discussed here for two types of networks: fixed-path trees (characterized by
dendritic stream channels) and variable-path trees (characterized by complex
highway networks).

2.1. Combinatorial Order in Fixed-path Networks

Melton [10] has shown that the Horton-Strahler ordering system is basically
a simple mathematical concept derived from the combinatorial analysis of a
finite rooted tree. Figure 1A shows such a tree in the familiar but idealized
form of a channel network. The network consists of three kinds of nodes:

Set A: Root nodes (marked by ®);

Set B: Outer nodes (open circles) with an array of one line from each node;

Set C:  Inner nodes (closed circles) with an array of three lines from each
node.

For the network in question there is one node in Set A, eight nodes in Set
B, and seven nodes in Set C. Lines joining nodes represent stream channels.

By defining any path from an outer node (Set B) as ‘“‘downstream’’, then
for any inner node (Set C) two lines are always ‘‘upstream’’ and only one line

* The author is Professor in the Department of Geography at the University of Bristol.




